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Motivation
• Purpose: In order to understand the structure of the 

nucleon (neutron and proton) we need to study the 
excited states (resonances).

• We have a lot of data on the proton but almost nothing 
on the neutron – both are needed for a complete 
understanding.understanding.

• Strategy is to use pion production:   γ* + n→ p π−

• We have some real photon data, almost no 
electroproduction (virtual photon)

• Difficulty: No free neutron target, need to use deuteron 
instead. 
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Cross Section in the Resonance Region

• Data on the Proton: 
Clear resonant 
structure, separation 
from the non-resonant 
background is possible

• Data on the deuteron: • Data on the deuteron: 
Kinematically smeared 
due to binding, off-
shell, final state 
interactions (FSI), etc.
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Exclusive π− electro-production
Detect e′, π− and at least ONE of the two final state
protons in D(e,e`π−p)p to ensure exclusivity and select
events where the “spectator” proton has low, backwards
momentum. Conservation of energy and momentum
allows to determine the initial state of the neutron.
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Novel approach by the BoNuS collaboration: 
detect the spectator proton directly.
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Q2 = -(qµ)2

= 4ΕΕ′ sin2(θe/2) 

W′2 = (qµ + nµ )2 

π− Production Kinematics  

γ∗ n � π- p

ν, q

φ*

θ*

π−−−−

n

p

E′, k′

E, k

W′2 = (qµ + nµ )2 

= (qµ + dµ - ps
µ)2

= (πµ + pµ )2

θ* = polar angle of the outgoing π− in C.M. frame

φ* = Azimuthal angle of the outgoing π− in C.M. frame

p

Hadronic plane

Leptonic plane
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Exclusive π− Cross Section

,

Unpolarized virtual photon cross-section of γ*+n � π−+p

Degree of transverse polarization:
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FSI Prediction for D(γ,π−p)p, by Laget

under πp rescattering 

R = ratio of the total to the quasi-free cross section
θR = polar angle between photon and spectator proton
PR = momentum of the spectator proton

under πp rescattering 
peak region only

Strong momentum and anglular dependence



Off-Shell and FSI for 
D(e,e′ps)X

Off-shell Effects

Select low Ps (<120 MeV/c) and 
large backward θpq (>100o), 
angle between Ps and virtual 
photon, to minimize FIS.

Final State Interactions

VIPs

Off-shell effects are 
negligible for small Ps. 
Choose Ps<120 MeV/c 
as Very Important 
Spectator Protons (VIP)

C. Atti et al, Eur. Phys. J. A 19,133-137 (2004).

W. Melnitchouk et al, Phys. Lett. B377, 11 (1996).
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Jefferson Lab Experiment E03-012

Barely off-shell Nucleon Structure 
(BoNuS)

• Electron beam energies: 2.1, 4.2, 5.3 GeV
• Spectator protons were detected by the newly 

built Radial Time Projection Chamber (RTPC)
• Scattered electrons and other final state particles 

were detected by CEBAF Large Acceptance 
Spectrometer (CLAS) 

• Target:  7 atm D2 gas, 20 cm long
• Data were taken from Sep. to Dec. in 2005



CLAS in Jefferson Lab, Hall B
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RTPC Sits in the Center of CLAS

BoNuS RTPC

FC

CLAS

stopper
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Radial Time Projection Chamber 
(RTPC)
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Radial Time Projection Chamber (RTPC)

proton

Deuteron / Helium

Sensitive to protons 
with momenta of 67-
250 Mev/c

3 layers of GEM

3200 pads (channels)

5 Tesla B field

Particles ID by dE/dx

3-D tracking:
time of drift -> r
pad position -> φφφφ, z

7Atm. D2 gas target, 
20cm in length

Trigger Electron

Helium/DME at 
80/20 ratio

100 µm

time of drift -> r
pad position -> φφφφ, z

dE/dXdE/dXdE/dXdE/dX
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RTPC Resolution

Trigger electrons 
measured by CLAS 
are compared to the 
same electrons 
measured in BoNuS 

∆θ

∆Ζ

∆φ measured in BoNuS 
during High Gain 
Calibration runs.  

H. Fenker, et.al. Nucl.Instrum. Meth. A592:273-286,2008

∆θ ∆φ
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Analysis outline
1. Quality Checks

2. Vertex correction and cuts

3. Particle identification (electron, π− and proton )

4. Fiducial cut for trigger electron, π− and protons

5. Energy loss correction

6. Exclusive cut (Missing Mass cut)

7. Acceptance correction

8. Background subtraction

9. Radiation correction

10.Particle detection efficiency for e−, proton and RTPC 
proton



Kenematic coverage and binning, 5 GeV

W′: 150 MeV each bin,  [1.15,2.95)

Q2 : 6 bins with boundaries at 
0.1309,  0.3790,  0.7697,  1.0969,  
1.5632,  2.6594,  4.5243

cosθ*: 8 bins with boundaries 
at 1.0, 0.5, -0.1, 0.3, 0.55, 
0.7, 0.8, 0.9,1.0

φ*: 15 bins, 24 degrees each 
bin, [0.0,360.0)
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Missing Mass Cut: 2σ

5 GeV 5 GeV

γ* + n � π− + X             X = γ* + n - π−

Ex = Eγ + En – Eπ ;    Px = Pγ + Pn - Pπ

Mx
2 = Ex

2 – Px
2

background
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Simulation Overview

����

RTPC(Geant4) � CLAS(geant3) � Reconstruction � Analysis

What have been done with simulation?
• Debug/optimize RTPC reconstruction packages
• Generate energy loss correction tables, radiation length tables
• Study Detector’s acceptance for D(e,e`π−pCLAS)p and D(e,e`π−pRTPC)p
• Study particle detection efficiency 
• Model the background… 20



Cross Section Fitting

A0 A1 Cosφ* A2 Cos2φ*= + +
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Cross Section: BoNuS Vs MAID and SAID

0.525

Cosθθθθ∗∗∗∗

0.875

4 GeV, W = 1.23

0.275

0.125

φφφφ∗∗∗∗

MAID 07 SAID 08 D(e,e′′′′ππππ−−−−pCLAS)pD(e,e′′′′ππππ−−−−pRTPC)p 22



BoNuS Vs Models, 5 GeV, W = 1.525

MAID 07 SAID 08 D(e,e′′′′ππππ−−−−pCLAS)pD(e,e′′′′ππππ−−−−pRTPC)p 23



BoNuS VIP Vs MAID, 5 GeV, W = 1.525

VIP = 70<ps<120  and 
MeV/c, θθθθpq>100o D(e,e′′′′ππππ−−−−pRTPC)p VIPD(e,e′′′′ππππ−−−−pCLAS)p VIP 24



A0: BoNuS VIP Vs MAID, 2 GeV
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A0: BoNuS VIP Vs MAID, 4 GeV
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A0: BoNuS VIP Vs MAID, 5 GeV
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Summary and outlook
• Measured absolute cross sections for D(e,e′π−p)p reaction over a wide 

kinematic range.

• Huge increase in available data for neutron channel. 

• These data will be used to improve our understanding of neutron structure, 
as part of fits to world data (SAID, MAID…)

• Our results are very sensitive to the acceptance correction, which must be 
carefully checked.

• In most bins, the pRTPC and pCLAS channels are consistent.

• We see qualitative consistency in most bins between our results and model 
predictions.

• The VIP data (low ps and large θpq) are mostly consistent with the full data 
set.

• Include the FSI correction in future.

• We look forward to incorporate these data into the world database.  We may 
repeat this analysis using other deuteron data. 
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Thank you!
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